Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Eur Phys J Plus ; 137(3): 395, 2022.
Article in English | MEDLINE | ID: covidwho-1769956

ABSTRACT

The purpose of this paper is to investigate the transmission dynamics of a fractional-order mathematical model of COVID-19 including susceptible ( S ), exposed ( E ), asymptomatic infected ( I 1 ), symptomatic infected ( I 2 ), and recovered ( R ) classes named SEI 1 I 2 R model, using the Caputo fractional derivative. Here, SEI 1 I 2 R model describes the effect of asymptomatic and symptomatic transmissions on coronavirus disease outbreak. The existence and uniqueness of the solution are studied with the help of Schaefer- and Banach-type fixed point theorems. Sensitivity analysis of the model in terms of the variance of each parameter is examined, and the basic reproduction number ( R 0 ) to discuss the local stability at two equilibrium points is proposed. Using the Routh-Hurwitz criterion of stability, it is found that the disease-free equilibrium will be stable for R 0 < 1 whereas the endemic equilibrium becomes stable for R 0 > 1 and unstable otherwise. Moreover, the numerical simulations for various values of fractional-order are carried out with the help of the fractional Euler method. The numerical results show that asymptomatic transmission has a lower impact on the disease outbreak rather than symptomatic transmission. Finally, the simulated graph of total infected population by proposed model here is compared with the real data of second-wave infected population of COVID-19 outbreak in India.

2.
Fractals ; : 1, 2021.
Article in English | Academic Search Complete | ID: covidwho-1286751

ABSTRACT

There are still mathematical predictions in the fight against epidemics. Speedy expansion, ways and procedures for the pandemic control require early understanding when solutions with better computer-based mathematical modeling and prognosis are developed. Despite high uncertainty in each of these models, one of the important tools for public health management system is epidemiology models. The fractional order is shown to be more effective in modeling epidemic diseases, in relation to the memory effects. Notably, recently founded calculus tools, called fractal-fractional calculus, having a fractional order and fractal dimension, enable us to study the behavior of a real-world problem under both fractal and fractional tools. This paper is about the dynamical behavior of a new mathematical model of novel corona disease (COVID-19) under the fractal-fractional Atangana–Baleanu derivative. The considered model has three compartments, namely, susceptible, infected and recovered or removed (SIR). The existence and uniqueness of the model’s solution will be proved via Krasnoselskii’s and Banach’s fixed point theorems, respectively. The stability of the solution in the sense of Hyers–Ulam (HU) will be built up by nonlinear functional analysis. Moreover, the numerical simulations for different values of isolation parameters corresponding to various fractal-fractional orders are analyzed using fractional Adams–Bashforth (AB) method with two-step Lagrange polynomial. Finally, the obtained simulation results are applied to the real data of disease spread from Pakistan. The graphical interpretations demonstrate that increasing the isolation parameters which is caused by strict precautionary measures will reduce the disease infection transmission in society. [ABSTRACT FROM AUTHOR] Copyright of Fractals is the property of World Scientific Publishing Company and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

3.
Alexandria Engineering Journal ; 2020.
Article | ScienceDirect | ID: covidwho-813415

ABSTRACT

In this manuscript, a qualitative analysis of the mathematical model of novel coronavirus (COVID-19) involving anew devised fractal-fractional operator in the Caputo sense having the fractional-order q and the fractal dimension p is considered. The concerned model is composed of eight compartments: susceptible, exposed, infected, super-spreaders, asymptomatic, hospitalized, recovery and fatality. Under the new derivative the existence and uniqueness of the solution for considered model are proved using Schaefer’s and Banach type fixed point approaches. Additionally, with the help of nonlinear functional analysis, the condition for Ulam’s type of stability of the solution to the considered model is established. For numerical simulation of proposed model, a fractional type of two-step Lagrange polynomial known as fractional Adams-Bashforth (AB) method is applied to simulate the results. At last, the results are tested with real data from COVID-19 outbreak in Wuhan City, Hubei Province of China from 4 January to 9 March 2020, taken from a source [42]. The Numerical results are presented in terms of graphs for different fractional-order q and fractal dimensions p to describe the transmission dynamics of disease infection.

SELECTION OF CITATIONS
SEARCH DETAIL